Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.678
1.
Article En | MEDLINE | ID: mdl-38728216

Ni-rich layered ternary cathodes are promising candidates thanks to their low toxic Co-content and high energy density (∼800 Wh/kg). However, a critical challenge in developing Ni-rich cathodes is to improve cyclic stability, especially under high voltage (>4.3 V), which directly affects the performance and lifespan of the battery. In this study, niobium-doped strontium titanate (Nb-STO) is successfully synthesized via a facile solvothermal method and used as a surface modification layer onto the LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode. The results exhibited that the Nb-STO modification significantly improved the cycling stability of the cathode material even under high-voltage (4.5 V) operational conditions. In particular, the best sample in our work could provide a high discharge capacity of ∼190 mAh/g after 100 cycles under 1 C with capacity retention over 84% in the voltage range of 3.0-4.5 V, superior to the pristine NCM811 (∼61%) and pure STO modified STO-811-600 (∼76%) samples under the same conditions. The improved electrochemical performance and stability of NCM811 under high voltage should be attributed to not only preventing the dissolution of the transition metals, further reducing the electrolyte's degradation by the end of charge, but also alleviating the internal resistance growth from uncontrollable cathode-electrolyte interface (CEI) evolution. These findings suggest that the as-synthesized STO with an optimized Nb-doping ratio could be a promising candidate for stabilizing Ni-rich cathode materials to facilitate the widespread commercialization of Ni-rich cathodes in modern LIBs.

2.
Magn Reson Med ; 2024 May 10.
Article En | MEDLINE | ID: mdl-38730562

PURPOSE: T1 mapping is a widely used quantitative MRI technique, but its tissue-specific values remain inconsistent across protocols, sites, and vendors. The ISMRM Reproducible Research and Quantitative MR study groups jointly launched a challenge to assess the reproducibility of a well-established inversion-recovery T1 mapping technique, using acquisition details from a seminal T1 mapping paper on a standardized phantom and in human brains. METHODS: The challenge used the acquisition protocol from Barral et al. (2010). Researchers collected T1 mapping data on the ISMRM/NIST phantom and/or in human brains. Data submission, pipeline development, and analysis were conducted using open-source platforms. Intersubmission and intrasubmission comparisons were performed. RESULTS: Eighteen submissions (39 phantom and 56 human datasets) on scanners by three MRI vendors were collected at 3 T (except one, at 0.35 T). The mean coefficient of variation was 6.1% for intersubmission phantom measurements, and 2.9% for intrasubmission measurements. For humans, the intersubmission/intrasubmission coefficient of variation was 5.9/3.2% in the genu and 16/6.9% in the cortex. An interactive dashboard for data visualization was also developed: https://rrsg2020.dashboards.neurolibre.org. CONCLUSION: The T1 intersubmission variability was twice as high as the intrasubmission variability in both phantoms and human brains, indicating that the acquisition details in the original paper were insufficient to reproduce a quantitative MRI protocol. This study reports the inherent uncertainty in T1 measures across independent research groups, bringing us one step closer to a practical clinical baseline of T1 variations in vivo.

4.
Heliyon ; 10(9): e29797, 2024 May 15.
Article En | MEDLINE | ID: mdl-38707329

Introduction: Non-steroid anti-inflammatory drugs (NSAIDs) are a class of prescription drugs with antipyretic, analgesic, anti-inflammatory, and antiplatelet effects. However, long-term use of NSAIDs will disrupt the intestinal mucosal barrier, causing erosion, ulcers, bleeding, and even perforation. Pure total flavonoids from Citrus (PTFC) is extracted from the dried peel of Citrus, showing a protective effect on intestinal mucosal barrier with unclear mechanisms. Methods: In the present study, we used diclofenac (7.5 mg kg-1, i.g.) to induce a rat model of NSAIDs-related intestinal lesions. PTFC (50, 75, 100 mg·kg-1 d-1, i.g.) was administered 9 days before the initial diclofenac administration, followed by co-administration on the last 5 days. Exosomes were identified by western blotting and transmission electron microscopy (TEM), and then co-cultured with IEC-6 cells. The expression of long non-coding RNA (lncRNA) H19, autophagy-related 5 (Atg5), ZO-1, Occludin, and Claudin-1 were detected by quantitative real-time PCR (qRT-PCR). The expression of light chain 3 (LC3)-I, LC3-II, ZO-1, Occludin and Claudin-1 proteins was tested by western blotting. The localization of both exosomes and autophagosomes was examined by immunofluorescent technique. Results: The treatment of PTFC attenuated intestinal mucosal mechanical barrier function disturbance in diclofenac-induced NSAIDs rats. IEC-6 cells co-cultured with NSAIDs rats-derived exosomes possessed the lowest levels of protective autophagy, and severe intestinal barrier injuries. Cells co-cultured with the exosomes extracted from rats administrated PTFC exhibited an improvement of autophagy and intestinal mucosal mechanical barrier function. The prevention effect was proportional to the concentration of PTFC administered. Conclusion: PTFC ameliorated NSAIDs-induced intestinal mucosal injury by down-regulating exosomal lncRNA H19 and promoting autophagy.

5.
Sci Rep ; 14(1): 10397, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710758

I/II/III mixed mode fractures of intersecting joint fissures often occur in natural rock masses, and jointed rock masses are prone to rockbursts in deep underground engineering when subjected to long-term crustal stresses. However, most studies of the mechanical mechanisms of these intersected joints have been conducted by simplifying two-dimensional joint model tests. Furthermore, the fracture mechanisms of two-dimensional intersected joints under tension and compression are completely different from those of three-dimensional joints. This paper presents a novel prefabricated specimen with combinations of intersecting joints capable of detecting the failure behaviours of rock I/II/III mixed mode fractures under creep loading. Uniaxial compression and multistage creep tests are performed on prefabricated sandstone specimens with intersecting joints of 0°/0°, 0°/30°, 0°/60°, and 0°/90°. The experimental results show that with the increase in the number of prefabricated intersecting joints, the uniaxial compressive strength and elastic modulus values of the sandstone specimens gradually decrease. In addition, the sandstone specimens experience relatively few AE events and minor axial strain variations in the first creep stage and the second creep stage of the multistage creep test. The axial strain increases sharply due to the sharp increase in the number of AE events in the third creep stage. The 0°/60° sandstone specimen undergoes accelerated creep failure, resulting in mixed X-shaped tensile‒shear rupture. The RA value is high based on the quantification of the creeping cracks using the acoustic emission parameters of the rise angle (RA) and average frequency (AF). The AF values of the 0°/0°, 0°/30°, and 0°/90° sandstone specimens are high. The experimental results show that a larger joint intersection angle leads to greater mutual restraints and greater effects of prefabricated crack propagation in the rock specimens, thus increasing the final failure strength. Finally, based on the acoustic emission count, a characteristic variable D suitable for characterizing the creep damage evolution of a joint rock mass is established. The findings of this paper can facilitate an effective understanding of the creep effect of I/II/III mixed mode fracture and its micromechanism. The research results will have a certain reference value for the detection and risk mitigation of instantaneous and time-delayed rockbursts.

6.
Cell Stem Cell ; 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38723634

Generation of chimeric antigen receptor macrophages (CAR-Ms) from human pluripotent stem cells (hPSCs) offers new prospects for cancer immunotherapy but is currently challenged by low differentiation efficiency and limited function. Here, we develop a highly efficient monolayer-based system that can produce around 6,000 macrophages from a single hPSC within 3 weeks. Based on CAR structure screening, we generate hPSC-CAR-Ms with stable CAR expression and potent tumoricidal activity in vitro. To overcome the loss of tumoricidal activity of hPSC-CAR-Ms in vivo, we use interferon-γ and monophosphoryl lipid A to activate an innate immune response that repolarizes the hPSC-CAR-Ms to tumoricidal macrophages. Moreover, through combined activation of T cells by hPSC-CAR-Ms, we demonstrate that activating a collaborative innate-adaptive immune response can further enhance the anti-tumor effect of hPSC-CAR-Ms in vivo. Collectively, our study provides feasible methodologies that significantly improve the production and function of hPSC-CAR-Ms to support their translation into clinical applications.

7.
Phytomedicine ; 129: 155614, 2024 Apr 21.
Article En | MEDLINE | ID: mdl-38692078

BACKGROUND: Cellular senescence is an emerging hallmark of cancers, primarily fuels cancer progression by expressing senescence-associated secretory phenotype (SASP). Caveolin-1 (CAV1) is a key mediator of cell senescence. Previous studies from our group have evidenced that the expression of CAV1 is downregulated by Celastrol (CeT). PURPOSE: To investigate the impact of CeT on cellular senescence and its subsequent influence on post-senescence-driven invasion, migration, and stemness of clear cell renal cell carcinoma (ccRCC). STUDY DESIGN AND METHODS: The expression levels of CAV1, canonical senescence markers, and markers associated with epithelial-mesenchymal transition (EMT) and stemness in clinical samples were assessed through Pearson correlation analysis. Senescent cell models were induced using DOX, and their impact on migration, invasion, and stemness was evaluated. The effects of CeT treatment on senescent cells and their pro-tumorigenic effects were examined. Subsequently, the underlying mechanism of CeT were explored using lentivirus transfection and CRISPR/Cas9 technology to silence CAV1. RESULTS: In human ccRCC clinical samples, the expression of the canonical senescence markers p53, p21, and p16 are associated with ccRCC progression. Senescent cells facilitated migration, invasion, and enhanced stemness in both ccRCC cells and ccRCC tumor-bearing mice. As expected, CeT treatment reduced senescence markers (p16, p53, p21, SA-ß-gal) and SASP factors (IL6, IL8, CXCL12), alleviating cell cycle arrest. However, it did not restore the proliferation of senescent cells. Additionally, CeT suppressed senescence-driven migration, invasion, and stemness. Further investigations into the underlying mechanism demonstrated that CAV1 is a critical mediator of cell senescence and represents a potential target for CeT to attenuate cellular senescence. CONCLUSIONS: This study presents a pioneering investigation into the intricate interplay between cellular senescence and ccRCC progression. We unveil a novel mechanism of CeT to mitigate cellular senescence by downregulating CAV1, thereby inhibiting the migration, invasion and stemness of ccRCC driven by senescent cells. These findings provide valuable insights into the underlying mechanisms of CeT and its potential as a targeted therapeutic approach for alleviating the aggressive phenotypes associated with senescent cells in ccRCC.

8.
Nutrients ; 16(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732622

Acute lung injury, a fatal condition characterized by a high mortality rate, necessitates urgent exploration of treatment modalities. Utilizing UHPLS-Q-Exactive Orbitrap/MS, our study scrutinized the active constituents present in Rosa roxburghii-fermented juice (RRFJ) while also assessing its protective efficacy against LPS-induced ALI in mice through lung histopathological analysis, cytokine profiling, and oxidative stress assessment. The protective mechanism of RRFJ against ALI in mice was elucidated utilizing metabolomics, network pharmacology, and molecular docking methodologies. Our experimental findings demonstrate that RRFJ markedly ameliorates pathological injuries in ALI-afflicted mice, mitigates systemic inflammation and oxidative stress, enhances energy metabolism, and restores dysregulated amino acid and arachidonic acid metabolic pathways. This study indicates that RRFJ can serve as a functional food for adjuvant treatment of ALI.


Acute Lung Injury , Fruit and Vegetable Juices , Lipopolysaccharides , Metabolomics , Oxidative Stress , Rosa , Animals , Acute Lung Injury/drug therapy , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Acute Lung Injury/prevention & control , Rosa/chemistry , Metabolomics/methods , Mice , Male , Oxidative Stress/drug effects , Network Pharmacology , Fermentation , Lung/drug effects , Lung/pathology , Lung/metabolism , Disease Models, Animal , Molecular Docking Simulation , Plant Extracts/pharmacology , Cytokines/metabolism , Energy Metabolism/drug effects
9.
Australas J Ageing ; 2024 May 13.
Article En | MEDLINE | ID: mdl-38741527

OBJECTIVE: Previous research has highlighted a heightened occurrence of social isolation and loneliness in older adults diagnosed with chronic lung diseases. Nevertheless, there exists a dearth of studies that have explored the influence of impoverished social relationships on lung function. This study aimed to examine the longitudinal association between social isolation, loneliness and lung function over 4 years among middle-aged and older Chinese adults. METHODS: This study employed two waves (2011 and 2015) of data from the China Health and Retirement Longitudinal Study (CHARLS). The analysis was limited to participants aged 45 years and above and stratified based on gender (3325 men and 3794 women). The measurement of peak expiratory flow (PEF) served as an indicator for assessing lung function. Lagged dependent variable regression models, accounting for covariates, were employed to explore the relationship between baseline social isolation and loneliness and the subsequent PEF. RESULTS: For women, social isolation was significantly associated with the decline in PEF at follow-up (ß = -.06, p < .001) even after adjusting for all covariates; no significant correlation was observed between loneliness and PEF. Among men, there was no significant association found between either social isolation or loneliness and PEF. CONCLUSIONS: Social isolation is prospectively associated with worse lung function in middle-aged and older Chinese women but not men. The results highlight the importance of promoting social relationships in public health initiatives, especially in groups that are more vulnerable.

10.
Phytomedicine ; 129: 155649, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38653154

BACKGROUND: Cardiovascular disease is the main cause of death and disability, with myocardial ischemia being the predominant type that poses a significant threat to humans. Reperfusion, an essential therapeutic approach, promptly reinstates blood circulation to the ischemic myocardium and stands as the most efficacious clinical method for myocardial preservation. Nevertheless, the restoration of blood flow associated with this process can potentially induce myocardial ischemia-reperfusion injury (MIRI), thereby diminishing the effectiveness of reperfusion and impacting patient prognosis. Therefore, it is of great significance to prevent and treat MIRI. PURPOSE: MIRI is an important factor affecting the prognosis of patients, and there is no specific in-clinic treatment plan. In this review, we have endeavored to summarize its pathological mechanisms and therapeutic drugs to provide more powerful evidence for clinical application. METHODS: A comprehensive literature review was conducted using PubMed, Web of Science, Embase, Medline and Google Scholar with a core focus on the pathological mechanisms and potential therapeutic drugs of MIRI. RESULTS: Accumulated evidence revealed that oxidative stress, calcium overload, mitochondrial dysfunction, energy metabolism disorder, ferroptosis, inflammatory reaction, endoplasmic reticulum stress, pyroptosis and autophagy regulation have been shown to participate in the process, and that the occurrence and development of MIRI are related to plenty of signaling pathways. Currently, a range of chemical drugs, natural products, and traditional Chinese medicine (TCM) preparations have demonstrated the ability to mitigate MIRI by targeting various mechanisms. CONCLUSIONS: At present, most of the research focuses on animal and cell experiments, and the regulatory mechanisms of each signaling pathway are still unclear. The translation of experimental findings into clinical practice remains incomplete, necessitating further exploration through large-scale, multi-center randomized controlled trials. Given the absence of a specific drug for MIRI, the identification of therapeutic agents to reduce myocardial ischemia is of utmost significance. For the future, it is imperative to enhance our understanding of the pathological mechanism underlying MIRI, continuously investigate and develop novel pharmaceutical agents, expedite the clinical translation of these drugs, and foster innovative approaches that integrate TCM with Western medicine. These efforts will facilitate the emergence of fresh perspectives for the clinical management of MIRI.

11.
Front Oncol ; 14: 1306242, 2024.
Article En | MEDLINE | ID: mdl-38651146

Intraductal T2 mapping based on a catheter receiver is proposed as a method of visualizing the extent of intraductal and periductal cholangiocarcinoma (CCA). Compared to external receivers, internal receivers provide locally enhanced signal-to-noise ratios by virtue of their lower field-of-view for body noise, allowing smaller voxels and higher resolution. However, inherent radial sensitivity variation and segmentation for patient safety both distort image brightness. We discuss simulated T2 weighted images and T2 maps, and in vitro images obtained using a thin film catheter receiver of a freshly resected liver specimen containing a polypoid intraductal tumor from a patient with CCA. T2 mapping provides a simple method of compensating non-uniform signal reception patterns of catheter receivers, allowing the visualization of tumor extent without contrast enhancement and potentially quantitative tissue characterization. Potential advantages and disadvantages of in vivo intraductal imaging are considered.

12.
Zhongguo Zhen Jiu ; 44(4): 411-417, 2024 Apr 12.
Article En, Zh | MEDLINE | ID: mdl-38621728

OBJECTIVES: To observe the effect and safety of acupuncture on quality of life, pain, and prostate symptoms in patients with chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). METHODS: Seventy patients with CP/CPPS were randomly divided into an acupuncture group (35 cases, 1 case was eliminated) and a sham acupuncture group (35 cases, 3 cases dropped out). The patients in the acupuncture group were treated with routine acupuncture at bilateral Zhongliao (BL 33), Huiyang (BL 35), Shenshu (BL 23) and Sanyinjiao (SP 6), while the patients in the sham acupuncture group were treated with shallow needling at non-meridian and non-acupoint points beside bilateral Zhongliao (BL 33), Huiyang (BL 35), Shenshu (BL 23) and Sanyinjiao (SP 6),without manipulation to induce arrival of qi (deqi). Both groups retained the needles for 30 min, with one session every other day, three times a week, for a total of 8 weeks (24 sessions). Before and after treatment, and at the follow-up of 24 weeks after treatment completion, the scores of MOS 36-item short-form health survey (SF-36, including 8 dimensions of physical function [PF], role physical function [RP], bodily pain [BP], general health status [GH], vitality [VT], social function [SF], role emotional [RE], and mental health [MH], which can be summarized as physical component summary [PCS] and mental component summary [MCS]), pelvic pain visual analogue scale (VAS), National Institutes of Health chronic prostatitis symptom index (NIH-CPSI), and international prostate symptom score (IPSS) were evaluated, and safety of both groups was assessed. RESULTS: After treatment and at the follow-up, the scores of each dimension and PCS, MCS scores of SF-36 in the acupuncture group were higher than those before treatment (P<0.05, P<0.01); compared before treatment, the RP, BP, and SF scores and PCS score in the sham acupuncture group were increased after treatment (P<0.05, P<0.01). After treatment, the acupuncture group had higher scores in RP, BP, GH, MH and PCS, MCS than those in the sham acupuncture group (P<0.05, P<0.01); at the follow-up, except for PF and RE dimensions, the scores in each dimension and PCS, MCS scores in the acupuncture group were higher than those in the sham acupuncture group (P<0.05, P<0.01). After treatment and at the follow-up, pelvic pain VAS, NIH-CPSI, IPSS scores in the acupuncture group were lower than those before treatment (P<0.01); in the sham acupuncture group, pelvic pain VAS, NIH-CPSI scores were lower after treatment, and NIH-CPSI score at the follow-up was lower compared with those before treatment (P<0.01). After treatment and at the follow-up, pelvic pain VAS, NIH-CPSI, IPSS scores in the acupuncture group were lower than those in the sham acupuncture group (P<0.01, P<0.05). No significant adverse reactions were observed in both groups, and the incidence rates of adverse reactions had no significant difference (P>0.05). CONCLUSIONS: Acupuncture could effectively improve the quality of life, reduce pain levels, alleviate prostate symptoms, and shows favorable long-term efficacy in patients with CP/CPPS.


Acupuncture Therapy , Chronic Pain , Prostatitis , Male , Humans , Chronic Pain/therapy , Quality of Life , Prostatitis/therapy , Chronic Disease , Acupuncture Therapy/methods , Pelvic Pain/therapy
13.
Int J Mol Sci ; 25(7)2024 Apr 07.
Article En | MEDLINE | ID: mdl-38612904

Cardiovascular diseases (CVDs) pose a significant global health threat due to their complex pathogenesis and high incidence, imposing a substantial burden on global healthcare systems. Integrins, a group of heterodimers consisting of α and ß subunits that are located on the cell membrane, have emerged as key players in mediating the occurrence and progression of CVDs by regulating the physiological activities of endothelial cells, vascular smooth muscle cells, platelets, fibroblasts, cardiomyocytes, and various immune cells. The crucial role of integrins in the progression of CVDs has valuable implications for targeted therapies. In this context, the development and application of various integrin antibodies and antagonists have been explored for antiplatelet therapy and anti-inflammatory-mediated tissue damage. Additionally, the rise of nanomedicine has enhanced the specificity and bioavailability of precision therapy targeting integrins. Nevertheless, the complexity of the pathogenesis of CVDs presents tremendous challenges for monoclonal targeted treatment. This paper reviews the mechanisms of integrins in the development of atherosclerosis, cardiac fibrosis, hypertension, and arrhythmias, which may pave the way for future innovations in the diagnosis and treatment of CVDs.


Cardiovascular Diseases , Hypertension , Humans , Integrins , Endothelial Cells , Cell Membrane
14.
Front Med (Lausanne) ; 11: 1342499, 2024.
Article En | MEDLINE | ID: mdl-38651062

Introduction: Hyperpolarized 129Xe MRI and spectroscopy is a rapidly growing technique for assessing lung function, with applications in a wide range of obstructive, restrictive, and pulmonary vascular disease. However, normal variations in 129Xe measures of gas exchange across healthy subjects are not well characterized, presenting an obstacle to differentiating disease processes from the consequences of expected physiological heterogeneity. Here, we use multivariate models to evaluate the role of age, sex, and BMI in a range of commonly used 129Xe measures of gas exchange. Materials and methods: Healthy subjects (N = 40, 16F, age 44.3 ± 17.8 yrs., min-max 22-87 years) with no history of cardiopulmonary disease underwent 129Xe gas exchange MRI and spectroscopy. We used multivariate linear models to assess the associations of age, sex, and body mass index (BMI) with the RBC:Membrane (RBC:M), membrane to gas (Mem:Gas), and red blood cell to gas (RBC:Gas) ratios, as well as measurements of RBC oscillation amplitude and RBC chemical shift. Results: Age, sex, and BMI were all significant covariates in the RBC:M model. Each additional 10 years of age was associated with a 0.05 decrease in RBC:M (p < 0.001), each additional 10 points of BMI was associated with a decrease of 0.07 (p = 0.02), and males were associated with a 0.17 higher RBC:M than females (p < 0.001). For Mem:Gas, male sex was associated with a decrease and BMI was associated with an increase. For RBC:Gas, age was associated with a decrease and male sex was associated with an increase. RBC oscillation amplitude increased with age and RBC chemical shift was not associated with any of the three covariates. Discussion: 129Xe MRI and spectroscopy measurements in healthy subjects, particularly the widely used RBC:M measurement, exhibit heterogeneity associated in part with variations in subject age, sex, and BMI. Elucidating the contributions of these and other factors to 129Xe gas exchange measurements is a critical component for differentiating disease processes from expected variation in healthy subjects. Notably, the Mem:Gas and RBC chemical shift appear to be stable with aging, suggesting that unexplained deviations in these metrics may be signs of underlying abnormalities.

15.
Meat Sci ; 214: 109499, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38677056

Methionine plays a vital role in protein synthesis, and regulation of antioxidant response in ruminants. This study aimed to assess the effects of dietary supplementation with N-acetyl-l-methionine (NALM), which serves a source of rumen-protected methionine, on growth performance, carcass traits, meat quality, and oxidative stability. Sixty Angus heifers (initial body weight = 408 ± 51.2 kg, 15-18 months) were stratified by body weight and randomly assigned to four dietary treatments: a control group (0% NALM), and experimental groups receiving diets containing 0.125%, 0.25%, and 0.50% NALM (dry matter (DM) basis), respectively. The experiment included a 2-week adaptation and a 22-week data and sample collection period. Results indicated that blood urea nitrogen in the plasma of the 0.25% NALM group was lower compared to the control and the 0.50% NALM groups (P = 0.02). The plasma methionine (P = 0.04), proline (P < 0.01), and tryptophan (P = 0.05) were higher in the 0.25% and 0.50% NALM groups, as well as the methionine and proline in the muscle of the 0.25% NALM group (P < 0.01). The muscle pH (P < 0.01) was increased by supplementing 0.25% and 0.50% NALM in diets but decreased the lactate (P < 0.01). The 0.25% NALM group also increased a* (P = 0.05), decreased L* (P = 0.05), drip loss (P = 0.01), and glycolytic potential in the muscle (P < 0.01). The total antioxidant capacity, superoxide dismutase, glutathione peroxidase, catalase, and glutathione in muscle of 0.25% NALM group were higher than that of the control (P < 0.01), and the malondialdehyde and protein carbonyl were lower (P < 0.01). In conclusion, the dietary supplement with NALM improves meat quality by enhancing the antioxidant effect of lipids and proteins.

16.
Proc Natl Acad Sci U S A ; 121(17): e2320713121, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38621119

As the SARS-CoV-2 virus continues to spread and mutate, it remains important to focus not only on preventing spread through vaccination but also on treating infection with direct-acting antivirals (DAA). The approval of Paxlovid, a SARS-CoV-2 main protease (Mpro) DAA, has been significant for treatment of patients. A limitation of this DAA, however, is that the antiviral component, nirmatrelvir, is rapidly metabolized and requires inclusion of a CYP450 3A4 metabolic inhibitor, ritonavir, to boost levels of the active drug. Serious drug-drug interactions can occur with Paxlovid for patients who are also taking other medications metabolized by CYP4503A4, particularly transplant or otherwise immunocompromised patients who are most at risk for SARS-CoV-2 infection and the development of severe symptoms. Developing an alternative antiviral with improved pharmacological properties is critical for treatment of these patients. By using a computational and structure-guided approach, we were able to optimize a 100 to 250 µM screening hit to a potent nanomolar inhibitor and lead compound, Mpro61. In this study, we further evaluate Mpro61 as a lead compound, starting with examination of its mode of binding to SARS-CoV-2 Mpro. In vitro pharmacological profiling established a lack of off-target effects, particularly CYP450 3A4 inhibition, as well as potential for synergy with the currently approved alternate antiviral, molnupiravir. Development and subsequent testing of a capsule formulation for oral dosing of Mpro61 in B6-K18-hACE2 mice demonstrated favorable pharmacological properties, efficacy, and synergy with molnupiravir, and complete recovery from subsequent challenge by SARS-CoV-2, establishing Mpro61 as a promising potential preclinical candidate.


Antiviral Agents , Cytidine/analogs & derivatives , Hepatitis C, Chronic , Hydroxylamines , Lactams , Leucine , Nitriles , Proline , Ritonavir , Humans , Animals , Mice , Antiviral Agents/pharmacology , Clinical Protocols , Drug Combinations
17.
Nat Commun ; 15(1): 3187, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622116

Transcription is crucial for the expression of genetic information and its efficient and accurate termination is required for all living organisms. Rho-dependent termination could rapidly terminate unwanted premature RNAs and play important roles in bacterial adaptation to changing environments. Although Rho has been discovered for about five decades, the regulation mechanisms of Rho-dependent termination are still not fully elucidated. Here we report that Rof is a conserved antiterminator and determine the cryogenic electron microscopy structure of Rho-Rof antitermination complex. Rof binds to the open-ring Rho hexamer and inhibits the initiation of Rho-dependent termination. Rof's N-terminal α-helix undergoes conformational changes upon binding with Rho, and is key in facilitating Rof-Rho interactions. Rof binds to Rho's primary binding site (PBS) and excludes Rho from binding with PBS ligand RNA at the initiation step. Further in vivo analyses in Salmonella Typhimurium show that Rof is required for virulence gene expression and host cell invasion, unveiling a physiological function of Rof and transcription termination in bacterial pathogenesis.


Rho Factor , Transcription Factors , Transcription Factors/metabolism , Virulence/genetics , Rho Factor/genetics , Rho Factor/metabolism , Gene Expression Regulation, Bacterial , Transcription, Genetic , Bacteria/genetics , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism
18.
J Colloid Interface Sci ; 666: 259-275, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38598998

Multimodal /components tumors synergistic therapy is a crucial approach for enhancing comprehensive efficacy. Our research has identified lots of high efficiency synergies among four suitable components, revealing combinations with remarkably low combination index (CI) values (10-3-10-8). These combinations hold promise for large tumor powerful electrothermal-thermodynamic-multi-chemo trimodal therapy. To implement this approach, we developed four-component of double-layer infinite coordination polymer (ICP) nanocomposites, in which hypoxia-activated AQ4N and thermodynamic agent AIPH coordinated with Cu(Ⅱ) to form initial layer of positively charged ICPs-l NPs, chemotherapeutic agents gossypol-hyaluronic acid (G-HA) and CA4 coordinated with Fe(Ⅲ) to form out layer of negatively charged ICPs-2 NPs, then double-layer infinite coordination polymer nanocomposites (ICPs-1@ICPs-2 CNPs) were fabricated by electrostatic adsorption using ICPs-l NPs and ICPs-2 NPs. Cell experiments have extensively optimized the coordination combinations of the four components and the composition of the two layers. A programmable three-stage therapeutic procedure, assisted by a micro-electrothermal needle (MEN), was developed. Under this procedure the resulting nanocomposites demonstrate the powerful trimodal comprehensive therapeutic outcomes for large tumors using lower components dosage, achieving a tumor inhibition rate nearly reaching 100 % and no recurrence for 60 days. This study offers remarkable potential for tumor multimodal /components synergistic therapy in future.


Antineoplastic Agents , Nanocomposites , Polymers , Nanocomposites/chemistry , Polymers/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Humans , Animals , Mice , Hyaluronic Acid/chemistry , Surface Properties , Particle Size , Drug Screening Assays, Antitumor , Cell Survival/drug effects , Cell Proliferation/drug effects , Cell Line, Tumor , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Neoplasms/therapy
19.
Eur J Oncol Nurs ; 70: 102583, 2024 Apr 06.
Article En | MEDLINE | ID: mdl-38631124

PURPOSE: To synthesise qualitative research on the parental hope experiences for children with cancer and identify the levels of parental hope experiences and psychosocial adjustment during cancer events. METHODS: Five electronic databases (Cochrane Library, PubMed, Embase, Web of Science, and CINAHL) and three Chinese databases (CNKI, Wanfang, and VIP) were used to retrieve qualitative studies on the hope experiences of parents of children with cancer from inception to February 2023. The Joanna Briggs Institute Qualitative Assessment and Review Instrument (JBI-QARI) was used to assess the methodological quality of the included studies. Data were synthesised using a thematic analysis. RESULTS: Four analytical themes were identified: the process and way hope exists, sources of hope, positive effects of hope, and obstacles to hope maintenance. CONCLUSIONS: Maintaining hope is crucial for parents who are caring for their children with cancer. There are different sources of hope, and targeted interventions can enhance the experience of hope for parents of children with cancer. Families, healthcare providers, and society should pay more attention to the parents of children with cancer and provide them with psychological, social, and financial support to improve their level of hope and quality of care.

20.
Adv Sci (Weinh) ; : e2310066, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38634211

Simple, sensitive, and accurate molecular diagnostics are critical for preventing rapid spread of infection and initiating early treatment of diseases. However, current molecular detection methods typically rely on extensive nucleic acid sample preparation and expensive instrumentation. Here, a simple, fully integrated, lab-in-a-magnetofluidic tube (LIAMT) platform is presented for "sample-to-result" molecular detection of virus. By leveraging magnetofluidic transport of micro/nano magnetic beads, the LIAMT device integrates viral lysis, nucleic acid extraction, isothermal amplification, and CRISPR detection within a single engineered microcentrifuge tube. To enable point-of-care molecular diagnostics, a palm-sized processor is developed for magnetofluidic separation, nucleic acid amplification, and visual fluorescence detection. The LIAMT platform is applied to detect SARS-CoV-2 and HIV viruses, achieving a detection sensitivity of 73.4 and 63.9 copies µL-1, respectively. Its clinical utility is further demonstrated by detecting SARS-CoV-2 and HIV in clinical samples. This simple, affordable, and portable LIAMT platform holds promise for rapid and sensitive molecular diagnostics of infectious diseases at the point-of-care.

...